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Intervention Analysis

The simplest form of multivariate time-series analysis involves investigating
the impact of some event (or “intervention”) on the level of the series. Some
people refer to these as “transfer function” models (which is a term from
engineering), or “impact assessments”.

There are two key things to remember before beginning an intervention anal-
ysis:

1. The researcher needs to know, a priori, when and how the intervention
occurred;

2. The nature of the event needs to be reflected as closely as possible.

Condition (1) just means that intervention analysis proceeds by assessing the
influence of a known change on a time series. It is not, therefore, a “fishing
expedition” in which changes in the time series are uncovered and causal
mechanisms are then found for those changes.

Condition (2) means that, to the extent possible, the operationalization of
the intervention should match its reality. For example, in an early study of
the impact of gun enforcement laws, Zimring (1975) had to deal with the fact
that, while the law was passed at a particular point in time, its enforcement
was implemented more slowly. Thus, rather than a single step-change (i.e.,
X = 0 before the law’s passage and X = 1 after) he has the intervention take
place over six months: X = 1/6 in the first month, X = 2/6 in the second,
etc. until X = 1 in the sixth month and thereafter. In other words, use your
theory, and use your head.

Consider a conventional stationary ARMA(p,q) time series:

φpL
pYt = θqL

qut (1)

Both long- and short-term changes in Yt may occur purely as a result of
“shocks” (extreme values of u). Call the collective effect of short- and long-
term chances in Yt due to the “shocks” ut Nt. If we consider the influence of
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some intervention Xt on the time series, we can write a very general model
as:

Yt = f(Xt) + Nt (2)

The challenge in intervention analysis is to distinguish changes in Y due to
the “noise” Nt from those due to the intervention Xt.

1 Zero-Order Models

The simplest way in which an event can impact a series is as a step function.
Recalling that AR processes can be rewritten as sums of moving averages of
the disturbances, we can consider the ARIMA aspects of the model as the
“noise” component. A simple version of a zero-order intervention model can
then be written as:

Yt = ωXt + Nt (3)

where Nt summarizes the “noise” (ARMA) components of the model, Xt is
the intervention variable (e.g., coded X = 0 prior to the event and X = 1
after) and ω is the impact of the intervention on Y . Note that the effect of
X on Y is instantaneous, constant and permanent. Estimating ω̂ provides
an estimate of the difference between the pre- and post-intervention levels of
the process.

Intervention modeling begins with establishing the ARIMA properties of the
series (i.e., the Nt component). This is done in the standard way. Once the
properties of the series are determined, it becomes possible to estimate the
model in (3) in a straightforward way. So, for example, if Y was initially
determined to follow an ARMA(1,0) process:

Yt = φYt−1 + ut

=
T∑

j=0

φjut−j (4)

then the model with the intervention is simply:
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Yt = ωXt +
T∑

j=0

φjut−j (5)

In Stata, we can estimate this model using the -arima- command; we’ll do
an example in a bit...

2 First-Order Models

The assumption that an event’s impact is immediate and discrete is often
untenable; an alternative approach would allow for a gradual effect of an
intervention over time. A first-order intervention model does this. Consider
the model in equation (2), but write it as:

Y ∗t = Yt −Nt (6)

That is, consider only the deterministic part of the equation f(Xt). In (3),
we used a simple linear function to define Y ∗t in the zero-order model. For a
first-order model, we require an additional parameter; define f(Xt) as:

Y ∗t ≡ f(Xt) =
ω

1− δL
Xt (7)

where we require that −1 < δ < 1 (we’ll see why in a minute). From this
specification of f(Xt), we get the following model:

Y ∗t =
ω

1− δL
Xt

(1− δL)Y ∗t = ωXt

Y ∗t = δY ∗t−1 + ωXt (8)

Note further that, because Y ∗t−1 = δY ∗t−2 + ωXt−1, and |δ| < 1 (so that
δjY ∗t−j → 0 as T →∞), we can substitute back into (8) to get:

Y ∗t = ω

T∑
j=0

δjXt (9)

This means that, for all observations prior to the intervention (i.e., where
Xt = 0), Y ∗t = 0 as well. In the first period t + 1 in which Xt = 1, we get:
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Y ∗t+1 = δY ∗t + ωXt+1

= δ(0) + ω(1)

= ω

In the second period after the intervention,

Y ∗t+2 = δY ∗t+1 + ωXt+2

= δω + ω

and the third period is:

Y ∗t+3 = δY ∗t+2 + ωXt+3

= δ(δ + ω) + ω

= δ2ω + δω + ω

More generally, for the kth postintervention period in which Xt = 1:

Y ∗t+k = δ(δk−1ω + ... + δω + ω)

=
k∑

j=0

δkω (10)

Because |δ| < 1, the terms being summed are decreasing over time. If we
consider the limiting cases, note that δ = 0 corresponds to the zero-order
model discussed above

Y ∗t = ωXt

Similarly, δ = 1 corresponds to a model in which the intervention yields a
deterministic trend with slope ω:

Y ∗t = ω
T∑

j=0

Xt
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(its unlikely that this latter formulation will be very useful...). For |δ| < 1
and 6= 0, δ determines the size of the effect of X on Y , as well as the rate
at which the shock approaches its asymptotic limit. Using (??), the latter is
simply:

Y ∗t→∞ =
∞∑

j=0

δjω

=
ω

1− δ
(11)

The effects of a shock on a model with ω = 1 and with varying values of δ
are presented graphically in Figure 1.

3 Shifts and Pulses

So far, we’ve discussed interventions as a permanent change in X (that is, a
shift). Alternatively, an intervention’s effect may only be temporary; it may
fade out over time. In that case, X may equal 1 only for a given period or
periods, after which it reverts back to a zero value.1 Both zero-and first-order
models of pulse functions exist.

Mathematically, models for these two types of interventions are the same;
what differs is the substance of their interpretation. When X is a pulse, a
zero-order model remains:

Yt = ωXt + Nt (12)

such that the value of Y ∗t is simply ω when Xt = 1 and 0 otherwise. In the
first-order model, following equation (9), we have:

Y ∗t = ω
T∑

j=0

δjXt (13)

1Note that one way to think of a pulse function is as a differenced shift.
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Figure 1: First-Order Impulse Response, ω = 1, for Varying δs

but the response of this function to the pulse is quite different. At time t+1,
the result is the same (that is, Y ∗t+1 = ω). At time T + 2, however, we have:

Y ∗t+2 = δY ∗t+1 + ωXt+2

= δω + ω(0)

= δω

and at time t + 3:

Y ∗t+3 = δY ∗t+2 + ωXt+3

= δ(δω) + ω(0)

= δ2ω
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In general, for the “pulse” model:

Y ∗t+k = δkω

This means that the effect of the “pulse” is now dying out at a geometric rate
determined by the value of δ. Not surprisingly, δ = 1 corresponds to a model
in which the effect of the pulse persists permanently (i.e., it is equivalent in
effect to a zero-order shift model). Conversely, δ = 0 yields a model in which
the effect of the shock is only felt in the period in which it occurs. Figure 2
displays the values if Y ∗t over time for a model in which ω = 1 and a single
pulse occurs at t = 3, for differing values of δ.

Figure 2: First-Order Impulse Response, ω = 1, for Varying δs, Single Pulse
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4 An Example: Oil Prices

Please Note: I’m still trying to figure out how to estimate transfer function
models in Stata, so this part of the notes may change at any time.

As an example, we’ll consider average annual U.S. crude oil prices, netween
1946 and 1999 inclusive (T = 54). The plot of these prices is in Figure 3.

Figure 3: Average Annual U.S. Crude Oil Prices, in 1999 Dollars

I did some ARIMA diagnostics, and determined that the logged series is I(1),
and that its first difference is a stationary ARMA(1,0) process (just trust me
on that one, OK?...). So, we’ll be working with the first difference of logged
oil prices. The idea is to examine the effect of the 1973 OPEC oil price shock
on prices overall.
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One thing we can do is estimate different models which reflect different ideas
about how the effect of the shock occurred. For example, a zero-order model
with a shift variable implies an abrupt, permanent change in prices, while
a first-order model implies a gradual, permanent change. Similarly, a zero-
order model with X as a “pulse” indicates an abrupt shift, followed by an
equally-abrupt dissipation of the effect, while a first-order pulse model al-
lows for an abrupt shift followed by a gradual decline in effect. This suggests
that one strategy is to estimate several such models, and see which one best
reflects the data.

As noted above, the zero-order model posits an abrupt shift; here, we can
write that model as:

∆PRICEt = α + ωSHIFTt + uARMA(1,0) (14)

for the model with a shift in X and

∆PRICEt = α + ωPULSEt + uARMA(1,0) (15)

for the model with X as a one-period “pulse”. In Stata, this model is esti-
mated using the -arima- command:

. arima logprix shift73, arima(1,1,0) hessian

. arima logprix pulse73, arima(1,1,0) hessian

For the first-order models, recall that the systematic component of the model
is:

Y ∗t = α + δY ∗t−1 + ωXt

equation
that is,

∆PRICEt = α + δ∆PRICEt−1 + ωSHIFTt + uARMA(1,0) (17)

for the shift model and

∆PRICEt = α + δ∆PRICEt−1 + ωPULSEt + uARMA(1,0) (18)
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for the pulse model. The latter two are estimated in Stata by:

. arima logprix LD logpr shift73, arima(1,1,0) hessian

. arima logprix LD logpr pulse73, arima(1,1,0) hessian

The results of these models are presented in the table below:

Parameter Zero-order Zero-order First-order First-order
Shift Pulse Shift Pulse

α̂ -0.01 0.01 -0.02 0.01
(s.e.) (0.02) (0.03) (0.02) (0.03)
ω̂Shift 1.19 - 1.20 -
(s.e.) (0.19) (0.18)
ω̂Pulse - 0.61 - 0.64
(s.e.) (0.14) (0.15)

δ̂ - - -0.02 0.05
(s.e.) (0.10) (0.10)
ρ̂ -0.14 0.10 -0.12 0.06
(s.e.) (0.15) (0.14) (0.17) (0.17)

Several things are interesting about these results:

• Both he shift and the pulse results are statistically significant and pos-
itive, indicating that the 1973 shock led directly to a rise in oil prices.

• Neither δ parameter is statistically distinguishable from zero; this indi-
cates that the effects of the shock are more-or-less instantaneous, and
die off quickly as well. That is, the effect neither occurs gradually, as
would be the case if δ > 0 in the shift model, nor does it die off slowly,
as would be the case for δ > 0 in the pulse model.

Next time: Distributed Lag Models...
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