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Unit Roots, and Integration, Part II

1 Variants on the Dickey-Fuller Test

The Dickey-Fuller test requires that the us be uncorrelated. But suppose we
have a model like the following, where the first difference of Y is a stationary
AR(p) process:

∆Yt =

p∑
i=1

di∆Yt−i + ut (1)

This model yields a model for Yt that is:

Yt = Yt−1 +

p∑
i=1

di∆Yt−i + ut (2)

If this is really what’s going on in our series, and we estimate a standard
D.F. test:

Yt = ρ̂Yt−1 + ut (3)

the term
∑p

i=1 di∆Yt−i gets lumped into the errors ut. This induces an AR(p)
structure in the us, and the standard D.F. test statistics will be wrong.
There are two ways of dealing with this problem:

• Change the model (known as the augmented Dickey-Fuller test), or

• Change the test statistic (the Phillips-Perron test).

1.1 The Augmented Dickey-Fuller Test

1.1.1 Statistics

Rather than estimating the model in (3), we can instead estimate:

∆Yt = Yt−1 +

p∑
i=1

di∆Yt−i + ut (4)
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and test whether or not ρ̂ = 0. This is the Augmented Dickey-Fuller test.
As with the D-F test, we can include a constant/trend term to differentiate
between a series with a unit root and one with a deterministic trend:

∆Yt = α + βt + Yt−1 +

p∑
i=1

di∆Yt−i + ut (5)

The purpose of the lags of ∆Yt−i is to ensure that the us are white noise.
This means that in choosing p (the number of lagged ∆Yt−i terms to include),
we have to consider two things:

1. Too few lags will leave autocorrelation in the errors, while

2. too many lags will reduce the power of the test statistic.

This suggests, as a practical matter, a couple different ways to go about
determining the value of p:

1. Start with a large value of p, and reduce it if the values of d̂i are
insignificant at long lags – This is generally a pretty good approach.

2. Start with a small value of p, and increase it if values of d̂i are signifi-
cant. This is a less-good approach...

3. Estimate models with a range of values for p, and use an AIC/BIC/F-
test to determine which is the best option. This is probably the best
option of all...

A sidenote: AIC and BIC tests:

The Akaike Information Criterion (AIC) and Bayes Information Criterion
(BIC) are general tests for model specification. They can be applied across a
range of different areas, and are like F-tests in that they allow for the testing
of the relative power of nested models. Each, however, does so by penalizing
models which are overspecified (i.e., those with “too many” parameters). The
AIC statistic is:

AIC(p) = lnσ̂2
p +

2p

N
(6)

where N is the number of observations in the regression, p is the number of
parameters in the model (including ρ and α), and σ̂2

p is the estimated σ2 for
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the regression including p total parameters. Similarly, the BIC statistic is
calculated as:

BIC(p) = lnσ̂2
p +

p lnN

N
(7)

The idea is to calculate these statistics for a range of different values of p,
and then choose the model in which the statistic is the lowest. Note that the
BIC statistic imposes a greater“penalty” for larger numbers of parameters;
this means that the model “selected” using the BIC statistic will always be
at least as parsimonious as that chosen using AIC.

1.1.2 An Example

Consider the data we discussed on Tuesday: The (logged) number of bills
passed by the U.S. Congress, 1789-1990. While its possible to do ADF tests
by “brute force”, the canned Stata routines are much easier to use. -dickey-,
-dfuller- and -unitroot- will estimate ADF tests for unit roots:

• For -dickey-, the user must specify the number of lags of ∆Y to
include, as well as whether a trend term is to be included or not. Also,
specifying -f- (which stands for -findlag-) will report the number of
lags “chosen” by the RMSE, AIC and BIC (labeled SIC) statistics. In
addition, if you want a report of the RMSE/AIC/SIC statistics, use the
-detail- option. These options make -dickey- a useful command.

• For -dfuller-, we are required to specify the number of lags of ∆Y we
wish to include, as well as whether or not we wish to include a trend
or exclude the constant.

• -unitroot- is essentially the same as -dickey-, but without the -findlag-
option. However, it also estimates Phillips-Perron test statistics (see
below).

Examining ADF tests for unit roots on the “bills” data, we find the following:
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Lags No Constant With Constant With Trend
(using -dfuller-) (using -dickey-) (using -dickey-)

1 0.31 -2.53 -2.69
2 0.31 -2.27 -2.35
3 0.39 -2.43 -2.40
4 0.44 -2.06 -1.72
5 0.54 -2.19 -1.62
6 0.63 -2.31 -1.50
7 0.81 -2.37 -1.03
8 0.75 -2.44 -1.11
Optimal Lags:
RMSE 7 7
AIC 0 7
BIC 0 7

These results suggest a few things. First, if we buy the tests, we should use
a standard D-F test (i.e., one with zero lags of ∆Y on the right-hand side)
for the model with no trend, and one with seven lags of ∆Y for the model
with a trend. Examining these statistics, and comparing them to the critical
values given the other day, we can see that under no circumstances can we
reject the null of a unit root in the data.

1.2 Phillips-Perron Tests

1.2.1 Intuition

The Phillips - Perron test for a unit root adopts a little different strategy.
Rather than changing the model estimated, the P-P test, we stick with the
model we talked about before:

∆Yt = α + ρYt−1 + ut (8)

The requirement that the us be white noise comes from the fact that the
limiting distributions of the test statistics depend on the correlation of the
residuals. In particular, the shape of the distributions depend on the ra-
tio σ2

σ2
e
, where σ2 is just the variance of the innovations (the us) and σ2

e =

limT→∞ T−1
∑T

j=1 E[(
∑t

i=1 ui)
2
j ]. This latter term is a measure of the tempo-

ral covariance of the residuals u. In a nutshell, so long as σ2 = σ2
e , then the

test statistics converge to the Dickey-Fuller distribution we discussed Tues-
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day. If they are not equal, then the (asymptotic) shape of the distribution
changes; the larger the difference between σ2 and σ2

e , the farther away from
a “true” D-F distribution the test statistic will be.

The idea behind the Phillips-Perron tests is to use an empirical estimate of
σ2 and σ2

e to adjust the statistic itself, so that it more closely conforms to
the “standard” D-F distribution. The calculation of the statistics is compli-
cated, and differs depending on whether the model includes a constant term
and/or a trend (see Maddala and Kim or Hamilton (pp. 507-515) for good
discussions) but there are essentially two statistics, Zρ and Zt (sometimes
called Zτ ). The former test statistic follows the same limiting distribution
as the T (ρ − 1) D-F statistic (which we really didn’t talk about) while the
latter uses the same critical values as the D-F ρ̂ statistic.

As with so many of these other tests, the researcher is required to specify the
number of lags which s/he believes to be important in estimating σ̂e. Gen-
erally, small numbers of lags are preferred on both empirical and theoretical
grounds; and sensitivity checking is usually a good idea.

1.2.2 Implementation

Hamilton (1994, pp. 511-512) has a good discussion of how to calculate the
P-P test “by hand” from regular regression output (its not all that hard).
A better option is to use either the -unitroot- or -pperron- commands in
Stata. Given the choice, I prefer -pperron-, since it reports test statistics as
well as critical values. Estimating this test for the Congressional bills data
yields the following results:

. pperron lnbills, lags(1)

...

. pperron lnbills, lags(1) trend

...
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No Trend No Trend With Trend With Trend
Lags Z(ρ) Z(t) Z(ρ) Z(t)
1 -10.45 -2.58 -20.72 -3.30
2 -9.89 -2.53 -20.86 -3.32
3 -9.79 -2.53 -21.72 -3.38
4 -9.24 -2.48 -21.56 -3.37
5 -9.17 -2.47 -22.19 -3.41
6 -9.09 -2.46 -22.71 -3.45
7 -8.82 -2.44 -22.79 -3.46
8 -9.05 -2.46 -23.79 -3.53
p < .05 Critical Values -13.70 -3.89 -20.70 -3.45

Note how stable the Z(t) statistics are to changes in the number of autoco-
variance lags; this would be a good thing. The problem is that, while the
results are unambiguous for the model without a trend term, the same is not
true for the trending model. This would be a tough call; taken together with
the other results, however, I’d tend to think that there’s still a unit root in
the series.

2 Other Unit Root Tests

2.1 The KPSS test

One potential problem with all the unit root tests so far described is that they
take a unit root as the null hypothesis. Kwiatkowski et. al. (1992) provide
an alternative test (which has come to be known as the KPSS test) for testing
the null of stationarity against the alternative of a unit root. This method
considers models with constant terms, and either with (their ντ statistic) or
without (νmu) a deterministic trend term. Thus, the KPSS test tests the null
of a level- or trend-stationary process against the alternative of a unit root.

Formally, the KPSS test is equal to:

LM =
T∑

t=1

S2
t

σ̂2
ε

(9)

where S2
t =

∑t
i=1 ûi is the running partial sum of the residuals and σ̂2

ε is the
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estimated error variance from the regression:

Yt = α + εt (10)

or:

Yt = α + βt + εt (11)

for the model with a trend.

The practical advantages to the KPSS test are twofold. First, they provide
an alternative to the DF/ADF/PP tests in which the null hypothesis is sta-
tionarity. They are thus good “complements” for the tests we’ve focused on
so far. A common strategy is to present results of both ADF/PP and KPSS
tests, and show that the results are consistent (e.g., that the former reject
the null while the latter fails to do so, or vice-versa). In cases where the two
tests diverge (e.g., both fail to reject the null), the possibility of “fractional
integration” should be considered (e.g. Baillie 1989; Box-Steffensmeier and
Smith 1996, 1998).

The other practical advantage to the KPSS test is that there is a user-written
Stata routine for estimating it (hooray!). The -kpss- command requires that
one specify the lag length (or “bandwidth”) since the denominator of the for-
mula is an empirical estimate of the long-run variance of the time-series, as
calculated by the estimated autocovariance function. Estimating a KPSS
test on our now-ubiquitous Congressional bills data yields the following:

. kpss lnbills, notrend maxlab(8)

. kpss lnbills, maxlag(8)
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Lags No Trend With Trend
0 6.23 1.24
1 3.33 0.72
2 2.31 0.52
3 1.79 0.42
4 1.48 0.36
5 1.26 0.32
6 1.11 0.29
7 0.99 0.26
8 0.90 0.24
p < .05 Critical Values 0.463 0.146

These results are broadly consistent with those for the DF/ADF/PP tests;
we soundly reject the null of stationarity in the model without a trend term,
but do so only inconsistently when a trend is included. Overall, these results
make it somewhat difficult to determine whether the “bills” series either (a)
has a unit root, or (b) is more-or-less stationary around a deterministic,
upward-sloping trend.

2.2 Variance-Ratio Tests

A quick review of variance-ratio tests:

• Based on the idea that, if a series is stationary, the variance of the
series is not oincreasing over time; while a series with a unit root has
increasing variance.

• Intuition: Compare the variance of a subset of the data “early” in
the series with a similarly-sized subset “later” in the process. In the
limit, for a stationary series, these two values should be the same, while
they will be different for an I(1) series. Thus, the null hypothesis is
stationarity, as for the KPSS test.

• There’s a good, brief discussion of these tests in Hamilton (p. 531-
32). Other cites are Cochrane (1988), Lo and McKinlay (1988), and
Cecchetti and Lam (1991).
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• There currently isn’t a Stata routine for estimating these (though I
once wrote a RATS proc for doing so). Think of them as just another
possible alternative for testing for a unit root.

3 General Issues in Unit Root Testing

The Sims (1988) article I assigned is to point out an issue with unit root
econometrics in general: that classicists and Bayesians have very different
ideas about the value of knife-edge unit root tests like the ones here.1

Unlike classical statisticians, Bayesians regard ρ (the “true value of the au-
tocorrelation parameter) as a random variable, and the goal to describe the
distribution of this variable, making use of the information contained in the
data. One result of this is that, unlike the classical approach (where the
distribution of ρ̂ is skewed), the Bayesian perspective allows testing using
standard t distributions. For more on why this is, see the discussion in
Hamilton.

Another issue has to do with lag lengths. As in the case of ARIMA models,
choosing different lag lengths (e.g. in the ADF, PP and KPSS tests) can lead
to different conclusions. This is an element of subjectivity that one needs to
be aware of, and sensitivity testing across numerous different lags is almost
always a good idea.

Finally, the whole reason we do unit root tests will become clearer when we
talk about cointegration in a few weeks.

1The discussion here relies on both Sims (1988) and the overview of these arguments
in Hamilton (pp. 532-34).
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