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1 Outline of the course...

• First half on “time series” methods.

• Second half on methods for “panel” and “TSCS” data.

2 A quick review of autocorrelation in OLS

regression...

One assumption of OLS is that of no autocorrelation in the errors:

E(uiuj) = 0 (for i 6= j)

or...

E(uu′) = σ2I = 0 for the off-diagonal elements

Now if

E(uiuj) 6= 0 for i 6= j

then we have autocorrelated errors.

For example, if we have data over time and

E(utut−1) 6= 0

then we have first-order autocorrelation (or AR(1) errors).
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E.g.:

Yt = β0 + β1Xt + ut (1)

ut = ut−1 + et (2)

with et a mean-zero, unit variance white noise process.

Where does autocorrelation come from?

• Trends or inertia in the data

• MISSPECIFICATION

• OMITTED VARIABLES

• Aggregated or “smoothed” data

What does autocorrelation do?

• Estimator is still unbiased

• Still consistent

• NOT most efficient (why?)

– If autocorrelation is positive, and the Xs are also positively auto-
correlated, then overall variance estimates will be larger than w/o
autocorrelation

• Gives biased standard errors

– If E(utut−1) > 0 (say) then the estimated s.e.s will generally be
underestimated...

How do we detect it?

• Graph of residuals on lagged residuals

• Runs test (Geary test)

• Chi-square test of positive vs. negative contemp. and lagged residuals
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• Durbin-Watson d

– Calculated as:

d =

∑N
t=2(ût − ût−1)

2∑N
t=1 û2

t

(3)

– Assumes that:

∗ Regression Model contains an intercept

∗ Fixed X variables (i.e. worthless if RHS variable is endoge-
nous, e.g. lagged Y’s)

∗ Assumes first-order autocorrelation in the errors (says nothing
about higher-order autocorrelation)

• Durbin’s H

– More general than d

– Higher-order autocorrelation

What to do about it?
GLS, incorporating ρ into the equation

• is BLUE

• We don’t normally know ρ...

A few different approaches...

• Difference equations

– Assume that ρ = 1 (or ρ = -1)

– Take first difference and then estimate

– E.g.,

Yt − Yt−1 = β1(Xt −Xt−1) + (ut − ut−1) (4)

• Alternatively, use d to estimate ρ, then transform:
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– Recall that ρ = 1− d/2

– This means that we can use d to empirically transform the equa-
tion:

(Yt − ρYt−1) = β0(1− ρ) + β1(Xt − ρXt−1) + (ut − ρut−1) (5)

• Cochrane-Orcutt - an iterative procedure

– Estimate the basic equation via OLS, and obtain residuals

– Use the residuals to estimate ρ̂ (i.e. the empirical correlation
between ut and ut−1) – this is a biased but consistent estimate of
ρ

– Use this estimate of ρ̂ to create the difference equation (5) and
estimate

– Save the residuals, and use them to estimate ρ̂ again

– Repeat this process until successive estimates of ρ̂ differ by a very
small amount

• Prais-Winsten - modification to Cochrane-Orcutt...

– Cochrane-Orcutt “loses” the first observation...

– transformation on first observation Ŷ0 = Y0(
√

1− ρ̂2), X̂0 = X0(
√

1− ρ̂2)

– Will generally converge to global maximum (vs. local alternatives)
since function is simple quadratic

3 Time Series Analysis: An Introduction...

We’re typically talking about a series of observations on some variable Y over
T time points:

Y = {Y0, Y1, ...YT}

This series of observations can be thought of as a series of random variables
(i.e., a stochastic process). We can consider the moments of this process in
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the usual way, e.g.:

µt = E(Yt) (7)

σ2
t ≡ V ar(Yt) = E[(Yt − µt)

2] (8)

γt,t−s ≡ Cov(Yt, Yt−s) = E[(Yt − µt)(Yt−s − µt−s)] (9)

Note, however, that we only have one realization of each data point Yt; this
will obviously make inferences about quantities like (7), um, difficult. So, we
need to place some restrictions on the process generating the data. There
are two such restrictions that are commonly used.

3.1 Stationarity

Stationarity is essentially a restriction on the data generating process over
time. In particular, stationarity means that the fundamental form of the
data generating process remains the same over time. This can be manifested
in the moments of the process. For example, mean stationarity means that
the expected value of the process is constant over time:

E(Yt) = µ ∀ t (10)

Similarly, variance stationarity means that the variance is temporally stable:

V ar(Yt) = E[(Yt − µ)2] ≡ σ2
Y ∀ t (11)

and covariance stationarity is similar:

Cov(Yt, Yt−s) = E[(Yt − µ)(Yt−s − µ)] = γs ∀ s (12)

In the last case, this means that the autocorrelation of two observations
{Yt, Yt−s} depends only on the lag s, not on “where” in the series they fall.

This is a “weak” form of stationarity (that is, stationarity in the moments);
a stricter form of stationarity requires that the joint probability distribution
(in other words, all the moments) of series of observations {Y1, Y2, ...Yt} is
the same as that for {Y1+s, Y2+s, ...Yt+s} for all t and s. In general, people
deal with weak stationarity, and that’s the sense in which we’ll use it here.
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(Note that, because it is fully characterized by its first two moments, if a
normally-distributed series is weakly stationary, it is also strongly station-
ary).

3.2 Asymptotic Independence

We might generally expect that the covariance between two observations Yt

and Yt−s would decrease as the distance between them (the lag) increases
(that is, as s increases). In the limit, we could say that two observations in
a series are asymptotically uncorrelated if:

Cov(Yt, Yt−s) = γs → 0 as s →∞ (13)

This condition is often referred to as ergodicity.

4 Autocovariance and Autocorrelation

If a series is stationary and ergoditic, then there are easy, consistent estimates
for the mean, variance and autocovariance:

µ̂ = Ȳ = T−1

T∑
t=1

Yt (14)

σ̂2 = T−1

T∑
t=1

(Yt − Ȳ )2 (15)

γ̂s = T−1

T∑
t=s+1

(Yt − Ȳ )(Yt−s − Ȳ ), s = 1, 2, 3, ... (16)

One way to characterize a series as to the extent of dependence over time
is by plotting its autocovariance against the number of lags s. In practice,
however, we often want to “standardize” this measure, to get the autocorre-
lation function. We do so by dividing the autocovariance by the estimated
variance:
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ρ̂s =
γ̂s

σ̂2
, s = 0,±1,±2, ... (17)

Note that ρ0 = 1, by definition. Plotting ρs against s gives the autocorrela-
tion function (often abbreviated ACF ). This plot is also occasionally referred
to as a correlogram.

EXAMPLE: Consider the example of a simple moving average process :

Yt = et + θet−1, t = 1, 2, ...T (18)

where et is i.i.d. with mean zero and constant variance σ2
e . Its easy to

calculate the properties of this series. The mean is:

µ = E(Yt)

= E(et) + θE(et−1)

= 0 (19)

The variance is:

σ2
Y = E[(et + θet−1)(et + θet−1)]

= E(e2
t ) + θ2E(e2

t−1) + 2θE(etet−1)

= (1 + θ2)σ2
e (20)

The one-lag covariance is:

γ1 = E[(et + θet−1)(et−1 + θet−2)]

= E(etet−1) + θE(e2
t−1) + θE(etet−2) + θ2E(et−1et−2)

= θE(e2
t−1)

= θσ2
e (21)

and the two- and higher-lag covariances are all zero (why?).
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For this series, then:

1. the means, variances and autocovariances are all independent of t,

2. the ACF is zero for all lags greater than one,

3. the ACF at one lag is dependent on the degree of dependence in the
moving average process. In particular, since we defined ρ̂ in (17) as γ̂s

σ̂2
,

this suggests that

ρ̂1 =
θσ2

e

(1 + θ2)σ2
e

=
θ

1 + θ2
(22)

(see Figure 1).

This in turn means that, for the MA(1) series given here,

• θ = 0 corresponds to ρ1 = 0, and is a “white noise” process (i.e., no
temporal dependence in Yt).

• When θ is positive,

1. ρ1 will be greater than zero,

2. successive values of Yt will be positively related, and

3. the series will be “smoother” than a white noise series.

• In contrast, when θ is less than zero,

1. ρ1 will be less than zero as well,

2. successive values of Yt will be negatively correlated, and

3. the series will be less “smooth” than a white noise sequence.

Next Time: More discussion of AR and MA processes, and ARIMA mod-
eling in general...
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Figure 1: Relationship between θ and ρ1 for an MA(1) series
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