
Notes on Simulation1

1 Uncertainty

Remember that there are two types of uncertainty we deal with when trying to make inferences
from our sample to the population:

1. Estimation Uncertainty: This is our uncertainty about what the true parameters of the
model are. We can think of it as being caused by small samples. In other words, if N were
infinity (not the entire sample, but infinity), then there would be no estimation uncertainty.

2. Fundamental Uncertainty: This is the stochastic component of the real world - our dis-
turbance ε. This means that our measure of fundamental uncertainty is σ2, the variance of
ε.

Clarify: Essentially this is a tool for (i) computing quantities of interest and (ii) for computing
confidence intervals around those quantities.

You should have already learned how to calculate these quantities for some basic models in your
earlier classes. For example, you probably learned to calculate confidence intervals around β or
around the predicted value of Y . How did you do this?

2 Calculating 95% Confidence Intervals Around β

Let’s start with the following model:

Y = β0 + β1X1 + ε (1)

We might want to calculate a confidence interval around β.

We know from the Gauss-Markov assumptions that

β̂ ∼ N (β, var(β̂)) (2)

STOP: What does it mean to say that β̂ is distributed in some way? Don’t we only have one
observation of β̂? Implicitly there are millions of samples of the data that we could have drawn from
the population - we happened to get our particular sample. However, if we had drawn a different
set of observations, we would have got a different set of values for β̂.2 What Eq. 2 is saying is that

1These notes are based on notes by Jonathan Nagler.
2It is important to remember that our estimate of β̂ is an unbiased estimate of β, but it will not necessarily equal

β. We hope that if the sample we are using is somehow ‘typical’ that our estimate will be ‘near’ the population value.
Unfortunately, it is always possible that we could obtain in any given sample an estimate β̂ far from β, and we can
never know for sure. The point here is to start thinking in terms of the sampling distribution of β̂. Recall that the
sampling distribution of a statistic can be thought of as the theoretical distribution of some statistic that we would
obtain through repeated sampling.
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the βs that we estimate from all of the possible sets of observations (samples) that we could draw
from the population follow a multivariate normal distribution with a mean of β and a variance of
var(β̂). As we’ll see, it is this that is at the basis of Clarify and other forms of simulation.

So, how do we calculate (large sample) confidence intervals? One method you are probably familiar
with is the pivotal method. We can use the sample value β̂ as the “center” or “pivot” of our
confidence interval. We must choose a level of confidence – tradition suggests that we set 1−α = 0.95
(a “95 percent level of confidence”), though there’s nothing special about this number. This means
that we want to create a confidence interval such that

Pr(β̂L ≤ β ≤ β̂U ) = 0.95

One way of calculating the bounds of the confidence interval is to choose β̂L and β̂U so that

Pr(β < β̂L) =

∫ β̂L

−∞
φβ̂(u) du = 0.025

and

Pr(β > β̂H) =

∫ ∞
β̂H

φβ̂(u) du = 0.025.

Since we know the parameters of φβ̂ – that is, the distribution is N (β, var(β̂) – calculating values
for the upper and lower limits of the confidence interval is straightforward. In effect, we can make
the following probabilistic statement about β.

Pr(β − 1.96σβ̂ < β̂ < β + 1.96σβ̂) = 0.95 (3)

where σβ̂ is the standard error of β̂. If we subtract β and β̂ from all sides of the inequality, we have

Pr(−β̂ − 1.96σβ̂ < −β < −β̂ + 1.96σβ̂) = 0.95 (4)

Now multiplying by −1 (which flips the inequalities) and rearranging terms, we have the familiar
equation giving us the 95% confidence intervals around β.3

Pr(β̂ − 1.96σβ̂ < β < β̂ + 1.96σβ̂) = 0.95 (5)

3Just as a reminder, Equation (5) does NOT mean that there is a 95% chance that the true population β is in
this interval. The population parameter is a fixed constant and is either in the confidence interval or it is not. In
other words, once our sample has been observed, β is either in it or it isn’t - it is not something that is probabilistic
at this point. The correct interpretation is that over a large number of repeated samples, approximately 95% of all
intervals constructed in this way will include β, the true population parameter. This is why we sometimes say that
we are “95% confident” that the interval contains β.
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3 Calculating 95% Confidence Intervals Around E[Y ]

A similar process can be used to calculate confidence intervals around the expected value of Y . We
know that

Ŷ ∼ N(E[Y ], var(Ŷ )) (6)

As a result, we can make a probabilistic statement about E[Y ].

Pr(E[Y ]− 1.96σŶ < Ŷ < E[Y ] + 1.96σŶ ) = 0.95 (7)

where σŶ is the standard error of Ŷ .4 If we subtract Ŷ and E[Y ] from all sides of the inequality,
we have

Pr(−Ŷ − 1.96σŶ < −E[Y ] < −Ŷ + 1.96σŶ ) = 0.95 (11)

Now multiplying by −1 (which flips the inequalities) and rearranging terms, we have the equation
giving us the 95% confidence intervals around E[Y ].

Pr(Ŷ − 1.96σŶ < E[Y ] < Ŷ + 1.96σŶ ) = 0.95 (12)

4 Calculating Large Sample Confidence Intervals

In general, the rules for calculating large sample confidence intervals around some statistic θ̂ are
the following:

1. Select your level of confidence 1− α.

2. Calculate the sample statistic θ̂.

3. Calculate the z-value associated with the 1− α level of confidence.

4. Multiply that z-value by σθ̂, the standard error of the sampling statistic.

5. Construct the confidence interval according to [θ̂L, θ̂U ] =
[
θ̂ − zα/2σθ̂, θ̂ + zα/2σθ̂

]
.

4We know that

Ŷ = β̂0 + β̂1X1 (8)

This means that

var(Ŷ ) = var(β̂0) +X2var(β̂1) + 2Xcov(β̂0, β̂1) (9)

It follows form this that

σŶ =

√
var(β̂0) +X2var(β̂1) + 2Xcov(β̂0, β̂1) (10)
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5 Simulation and Clarify

What we have just seen is that we can calculate quantities of interest and confidence intervals
around these quantities for certain basic models without the need for things like Clarify. However,
in cases that are more complicated than simple linear models such as OLS, we may need to use
simulation methods. This is essentially what Clarify does.

Say we were interested in a probit model. We start with the following basic model

Y ∗i = Xiβ + ε (13)

where

Yi =

{
1 if Y ∗i > 0
0 if Y ∗i ≤ 0

We might be interested in several quantities of interest from a probit model. We know that

Pr(Yi = 1) = Φ(Xiβ) (14)

where Φ is the cdf of the normal distribution and Xiβ is just our linear model i.e. β0 + β1X1 +
β2X2 . . .. We might want to know the predicted probability of Yi = 1 for a given value of X and
compute a confidence interval around this. We can do this through simulation.

5.1 The Basics of Simulation

The following example assumes that we want some quantity of interest involving X and β̂. We’ll
look at a specific example in a moment.

• Step 1: Draw M values of β̂.

1. Estimate your model
This will involve estimating the k × 1 vector of β̂ coefficients and a k × k variance-
covariance matrix var(β̂).

2. Draw a value of β̂ from the distribution N(β̂, var(β̂))
Note that the coefficients from ML estimators will always be multivariate normal.

3. Repeat (2) M times, where M is normally about a 1,000.
M is the number of draws.

• Step 2: Choose the values of X that you are interested in.

• Step 3: Compute the M values of the quantity of interest that you want (in this case Pr(Yi =
1)) by combining each value of β̂m with X. Then take the normal of this sum. This gives us
M values of our quantity of interest - call it Pm.

• Step 4: Look at the distribution of Pm to determine our confidence intervals.

This might sound rather complicated but it really isn’t.
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5.2 An Example in Stata

Say our underlying linear model was the following:

Y ∗ = β0 + β1X1 + β2X2 + ε (15)

In other words, we have two independent variables and a constant.

• Step 1: Draw M values of β̂.

1. Estimate your model

· probit y X1 X2

· preserve

2. Draw M values of β̂ from the distribution N(β̂, var(β̂))

· set seed 10101
· drawnorm MG b1−MG b3, n(1000) means(e(b)) cov(e(V)) clear
· save simulated betas, replace
· restore
· merge using simulated betas
· summarize merge
· drop merge
· summarize

• Step 2: Choose the values of X that you are interested in.

· scalar h X1 = 2
· scalar h X2 = 2.5
· scalar h constant= 1

• Step 3: Compute the M values of the quantity of interest that you want (in this case
Pr(Yi = 1)) by combining each value of β̂m with X. Then take the normal of this sum.
This gives us M values of our quantity of interest - call it Pm.

· generate x betahat1 = MG b1*h X1+ MG b2*h X2 + MG b3*h constant
· generate prob hat1 = normal(x betahat1)5

5To change the code for logit, you would obviously run a logit model at the beginning. At this point of the code,
you would type: generate prob hat1 =1/(1+exp(-(x betahat1))).
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• Step 4: Look at the distribution of Pm to determine our confidence intervals.

· sum prob hat1
· centile prob hat1, centile(2.5 97.5)

5.3 Another Example in Stata

Say we had the same probit model, but now we wanted to know how the predicted probability of
Yi = 1 changes if we increase X1 by one unit. The code would look like that shown below.

· probit y X1 X2

· preserve
· set seed 10101
· drawnorm MG b1−MG b3, n(1000) means(e(b)) cov(e(V)) clear
· save simulated betas, replace
· restore
· merge using simulated betas
· summarize merge
· drop merge
· summarize
· scalar h X1 = 2
· scalar h X2 = 2.5
· scalar h constant= 1
· scalar h X12 = 3
· generate x betahat1 = MG b1*h X1+ MG b2*h X2 + MG b3*h constant
· generate prob hat1 = normal(x betahat1)
· generate x betahat2 = MG b1*h X12+ MG b2*h X2 + MG b3*h constant
· generate prob hat2 = normal(x betahat2)
· generate prob diff = prob hat2-prob hat1
· sum prob hat1 prob hat2 prob diff
· centile prob hat1 prob hat1 prob diff, centile(2.5 97.5)

5.4 Clarify

All Clarify does is automate some of this underlying code so that you do not have to write it.6

For example, to produce the predicted probability and confidence intervals that we calculated in
the first example above, all we would type using Clarify is:

· estsimp probit X1 X2

· setx X1 2 X2 2.5
· setx

6To get Clarify, open Stata and type: net from http://gking.harvard.edu/clarify.
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· simqi

In order to produce the change in predicted probability and confidence intervals that we calculated
in the second example above, all we would type using Clarify is:

· estsimp probit X1 X2

· setx X1 2 X2 2.5
· setx
· simqi, fd(pr) changex(X1 2 3) level(95)

While Clarify does simplify matters, I want you to be very comfortable with the underlying code
since Clarify does not do everything.

5.5 Simulation with Interaction Terms

* **************************************************************** *;

* Estimate Probit Model *;

* Y* = b0 + b1X + b2Z + b3XZ + b4Control1 + b5Control2 + epsilon *;

* **************************************************************** *;

probit Y X Z XZ Control1 Control2;

* **************************************************************** *;

* Take 10,000 draws from the estimated coefficient vector and *;

* variance-covariance matrix. *;

* **************************************************************** *;

preserve;

set seed 10101;

drawnorm MG_b1-MG_b6, n(10000) means(e(b)) cov(e(V)) clear;

* **************************************************************** *;

* To calculate the desired quantities of interest we need to set *;

* up a loop. This is what we do here. First, specify what *;

* quantities should be saved and what these quantities should be *;

* called. *;

* **************************************************************** *;

postutil clear;

postfile mypost prob_hat0 lo0 hi0 prob_hat1 lo1

hi1 diff_hat diff_lo diff_hi using sim , replace;

noisily display "start";
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* **************************************************************** *;

* Start loop. Let ‘a’ be the modifying variable Z and let this *;

* run from min to max in the desired increments. *;

* **************************************************************** *;

local a=0 ; while ‘a’ <= 35 { ;

{;

scalar h_X=5;

scalar h_Control1=2;

scalar h_Control2=3.4;

scalar h_constant=1;

generate x_betahat0 = MG_b1*h_X

+ MG_b2*(‘a’)

+ MG_b3*h_X*(‘a’)

+ MG_b4*h_Control1

+ MG_b5*h_Control2

+ MG_b6*h_constant;

generate x_betahat1 = MG_b1*(h_X+1)

+ MG_b2*‘a’

+ MG_b3*(h_X+1)*(‘a’)

+ MG_b4*h_Control1

+ MG_b5*h_Control2

+ MG_b6*h_constant;

gen prob0=normal(x_betahat0);

gen prob1=normal(x_betahat1);

gen diff=prob1-prob0;

egen probhat0=mean(prob0);

egen probhat1=mean(prob1);

egen diffhat=mean(diff);

tempname prob_hat0 lo0 hi0 prob_hat1 lo1 hi1 diff_hat diff_lo diff_hi;

_pctile prob0, p(2.5,97.5);

scalar ‘lo0’ = r(r1);

scalar ‘hi0’ = r(r2);
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_pctile prob1, p(2.5,97.5);

scalar ‘lo1’= r(r1);

scalar ‘hi1’= r(r2);

_pctile diff, p(2.5,97.5);

scalar ‘diff_lo’= r(r1);

scalar ‘diff_hi’= r(r2);

scalar ‘prob_hat0’=probhat0;

scalar ‘prob_hat1’=probhat1;

scalar ‘diff_hat’=diffhat;

post mypost (‘prob_hat0’) (‘lo0’) (‘hi0’) (‘prob_hat1’) (‘lo1’) (‘hi1’)

(‘diff_hat’) (‘diff_lo’) (‘diff_hi’) ;

};

drop x_betahat0 x_betahat1 prob0 prob1 diff probhat0 probhat1 diffhat ;

local a=‘a’+ 1 ;

display "." _c;

} ;

display "";

postclose mypost;

* **************************************************************** *;

* Call on posted quantities of interest and graph effect of *;

* changing X from 5 to 6 on Pr(Y=1) at different values of Z when *;

* the control variables are set to specific values. *;

* **************************************************************** *;

use sim, clear;

gen MV = _n-1;

graph twoway line diff_hat MV, clwidth(medium) clcolor(black)

|| line diff_lo MV, clpattern(dash) clwidth(thin) clcolor(black)

|| line diff_hi MV, clpattern(dash) clwidth(thin) clcolor(black)

|| ,

xlabel(0 10 20 30, labsize(3))

ylabel(-.1 0 0.1 0.2, labsize(3))

yscale(noline)

xscale(noline)

yline(0) legend(off)

scheme(s2mono) graphregion(fcolor(white));
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* **************************************************************** *;

* Figure can be saved in a variety of formats. *;

* **************************************************************** *;

graph export h:\figure1.eps, replace;

translate @Graph h:\figure1.wmf;
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