
POLS571 - Longitudinal Data Analysis
September 6, 2001

FYI, we’ll be using an example dataset today: The percentage of Democratically-
held seats in the U.S. Congress, for the 1st - 101st Congresses (1789-1990).
A plot of the series is in Figure 1.

Figure 1: Democratic Percentage of the U.S. Congress, 1789-1990

1 Properties of Time Series

1.1 Stationarity

We covered this in the last class...
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1.2 Asymptotic Independence/Ergodicity

We might generally expect that the covariance between two observations Yt

and Yt−s would decrease as the distance between them (the lag) increases
(that is, as s increases). In the limit, we could say that two observations in
a series are asymptotically uncorrelated if:

Cov(Yt, Yt−s) = γs → 0 as s →∞ (1)

This condition is often referred to as ergodicity, and is a lot like stationarity.

2 Autocovariance, Autocorrelation and Par-

tial Autocorrelation

If a series is stationary and ergoditic, then there are easy, consistent estimates
for the mean, variance and autocovariance:

µ̂ = Ȳ = T−1

T∑
t=1

Yt (2)

σ̂2 = T−1

T∑
t=1

(Yt − Ȳ )2 (3)

γ̂s = T−1

T∑
t=s+1

(Yt − Ȳ )(Yt−s − Ȳ ), s = 1, 2, 3, ... (4)

One way to characterize a series as to the extent of dependence over time
is by plotting its autocovariances against the number of lags s. In practice,
however, we often want to “standardize” this measure, to get the autocorre-
lation function. We do so by dividing the autocovariance by the estimated
variance:

ρ̂s =
γ̂s

σ̂2
, s = 0,±1,±2, ... (5)

Note that ρ0 = 1, by definition. Plotting ρs against s gives the autocorrela-
tion function (often abbreviated ACF ). This plot is also occasionally referred
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to as a correlogram. The Stata command for this is -ac-.

Example...

. ac dcongpct, lags(20) needle

Figure 2: ACF Plot, Democratic Percentage of the U.S. Congress, 1789-1990

The correlogram indicates that there’s significant autocorrelation out to
about four lags, and that this autocorrelation decays relatively slowly over
time (which isn’t all that surprising).
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2.1 Partial Autocorrelation

The partial autocorrelation coefficient (typically “PAC” or “PACF”) is the
correlation between Yt and Yt−s after controlling for (“partialling out”) the
the common linear effects of the intermediate lags. The formulas for doing
this are complex,1 but the general result is that the PACFs allow us to dis-
tinguish between AR(1) and MA(q) processes (more on this later...). The
relevant Stata command is -pac-.

Example: The PACF from the Democratic Congressional Percentage series.

. pac dcongpct, lags(20) needle

The PACF plot suggests that the only significant partial autocorrelation oc-
curs at one lag.

What does this mean? We’ll get to that in a bit...

3 AR, MA and Integrated Processes

Time series are usually categorized according to the nature of the data-
generating process which underlies them. There are three general charac-
teristics: autoregressive series, moving-average series, and integrated series,
plus combinations of the three (hence, ARIMA).

3.1 Integrated Processes and Random Walks

In many respects, integrated series are the simplest. Simply put, an inte-
grated series is a series in which the value of Yt is simply a sum of random
“shocks”.

3.1.1 I(1) Series

An example is the integrated of order one (I(1)) series :

1Specifically, the PACF is estimated from a solution to the Yule-Walker system of
equations. A good mathematical treatment of this is in Box et. al. 1994, 64-69
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Figure 3: PACF Plot, Democratic Percentage of the U.S. Congress, 1789-
1990

Yt = Yt−1 + ut, ut ∼ i.i.d.(0, σ2
u) (6)

This series is also known as a random walk. By recursively substituting Yt−k−1

for Yt−k, we can see that:

Yt = Yt−2 + ut−1 + ut

= Yt−3 + ut−2 + ut−1 + ut

=
T∑

t=0

ut (7)

that is, that the process is simply a sum of all past random shocks. This
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means that the effect of any one shock persists ; a large increase or decrease
in Y at some t (due to a value of ut that is especially large in magnitude)
will cause the series to shift up or down until a countervailing shock comes
along. As a result of this persistence, integrated series tend to drift; that is,
they can take on consistently high or low values for long periods of time.

Example: Here’s a random integrated series of the form Yt = Yt−1+ut, where
u ∼ N(0, 1), Y0 = 0 and T = 100). Note that, while E(Yt) = 0,2 the value of
Yt drifts far away from zero for long periods of time.

Figure 4: Random I(1) series with ut ∼ N(0, 1), T = 100

If we extend the series to T = 200, we see a similar pattern.

2If Y0 ≡ u0 6= 0, then the expected value of Y is Y0.
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Figure 5: Random I(1) series with ut ∼ N(0, 1), T = 200

In both of these series, we might be tempted to say that they are “trending”
downwards. In fact, they aren’t; the quality of persistence in an I(1) process
only makes it look as if they are. In reality, they are drifting, and integrated
series are capable of drifting away from their (theoretical) means for long
periods of time. This tendency to drift means that the I(1) series is not
stationary; in particular, the variance of an I(1) process is equal to:

V ar(Yt) ≡ E(Yt)
2 = tσ2 (8)

and the autocovariance is equal to:

Cov(Yt, Yt−s) = |t− s|σ2. (9)
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Both values depend on t, which means that the I(1) series is not stationary.

Because an I(1) series is simply a sum of all previous shocks, there’s an easy
way to model it: differencing. We can rearrange (6) to:

Yt − Yt−1 = ut (10)

which we often write in terms of the difference operator ∆ (or sometimes ∇):

∆Yt = ut

The differenced series is just the white-noise process ut. For example, differ-
encing the example series above gives the following graph:

Figure 6: Differenced I(1) series with ut ∼ N(0, 1), T = 200
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3.1.2 Higher-order Integrated Series

In general, the order of integration can be thought of as the number of
differencings a series requires to be made stationary. A nonstationary I(1)
series, differenced once, becomes a stationary one. Similarly, an I(d) series is
one which, differenced d times, becomes a stationary series. One example is
the I(2) process:

Yt = ut + 2ut−1 + 3ut−2 + ... (12)

If we difference this equation, we get:

∆Yt = [ut + 2ut−1 + 3ut−2 + ...]− [ut−1 + 2ut−2 + 3ut−3 + ...]

=
T∑

j=0

ut−j (13)

If we further difference this series, we get:

∆2Yt ≡ (Yt − Yt−1)− (Yt−1 − Yt−2) = [ut + ut−1 + ...]− [ut−1 + ut−2 + ...]

= ut (14)

which is a stationary series.

Another kind of series that leads to higher-order integrated processes is one
with a polynomial trend. Consider the simple deterministic process:

Yt = t2 (15)

Differencing this yields:

∆Yt = t2 − (t− 1)2

= t2 − t2 + 2t− 1

= 2t− 1 (16)

and further differencing gives:
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∆2Yt = (2t− 1)− (2t− 3)

= 2 (17)

that is, a series of constants. More generally, a kth order polynomial series
can generally be made stationary by differencing k times. Generally, though,
there aren’t a lot of practical applications which involved orders of integra-
tion higher than I(1).

3.2 AR(p) Series

3.2.1 The AR(1) Model

An autoregressive series is what the name implies: a series in which past
values of Yt directly influence current values. Such models have a lot of
intuitive appeal, in that they seem to reflect what we think of as direct
temporal dependence. The simplest AR series is the AR(1):

Yt = φYt−1 + ut, ut ∼ i.i.d.(0, σ2
u) (18)

An alternative way to write (18) is simply:

Yt − φYt−1 = ut (19)

Assume that the series started with a single constant value Y0 sometime in
the distant past, T periods ago. By repeatedly substituting lagged values of
Y into the equation, we can rewrite this as:

Yt = φ[φYt−2 + ut−1] + ut

= φ2Yt−2 + φut−1] + ut

= φ2[φYt−3 + ut−2] + φut−1 + ut

= φ3Yt−3 + φ2ut−2 + φut−1 + ut

= ...

=
T−1∑
j=0

φjut−j + φT Y0 (20)
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The first part of this is a “moving average” of (exponentially φ-weighted)
lagged values of the us. The second is a function of the starting value Y0

(a.k.a. Yt−T ).

What is the expected value (mean) of this series?

E(Yt) = E(
T−1∑
j=0

φjut−j) + E(φT Yt−T )

= φT Y0 (21)

That is, the expected value depends on the starting value and (more impor-
tantly) φ.

• If |φ| > 1, then the mean of the series depends on the starting value
Y0, and is increasing (for φ > 1) or alternating between positive and
negative with increasing amplitude (for φ < −1) over time.

• If |φ| = 1, then the mean of the series is exactly equal to the starting
value Y0.

• If |φ| < 1, then the importance of Y0 decreases over time; asymptoti-
cally (as T → ∞), the influence of the starting value disappears, and
we can write (20) as:

Yt =
∞∑

j=0

φjut−j (22)

This suggests one interpretation for an AR(1) series: As the sum of an
exponentially-weighted series of random shocks. So, an AR(1) process

• is like an integrated process, in that the effects of a shock persist over
time; however,

• the size of those effects decay over time.

• In the limit, the effect of any one shock very much later is zero.
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These results point out another important fact about the AR(1) process: An
AR(1) process is mean-stationary iff |φ| < 1. Similarly, we can write
the variance of a stationary AR(1) process as a function of (22):

V ar(Yt) ≡ E(Y 2
t ) = E(

∞∑
j=0

φjut−j)
2

=
∞∑

j=0

φ2jE(u2
t−j)

= σ2

∞∑
j=0

φ2j

=
σ2

1− φ2
(23)

and so can see that the variance is defined only for |φ| < 1.

3.3 Higher-order AR Models

A more general AR(p) model can be written:

Yt = φ1Yt−1 + φ2Yt−2 + ... + φpYt−p + ut (24)

To discuss these models, let’s introduce a little notation. Let L be the “lag”
operator; treat this as any other algebraic operation. So, we can write:

LYt = Yt−1

L2Yt = Yt−2

LsYt = Yt−s

L0Yt = Yt

Likewise, its easy to see that the relationship between L and the difference
operator ∆ is simply ∆ = 1− L, e.g.:

∆Yt = Yt − Yt−1

= (1− L)Yt
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Using this notation, we can write the AR(1) equation (18) as:

(1− φL)Yt = ut (25)

Similarly,

∆2Yt = (1− L)2Yt = (1− 2L− L2)Yt = Yt − 2Yt−1 + Yt−2

This notation is useful because it allows us to write the more general AR(p)
series in (24) as:

(1− φL− φ2L
2 − ...− φpL

p)Yt = ut (27)

We’ll use this notation more when we get to general ARIMA(p,d,q) series,
below.

Next time: MA models, and identifying and estimating ARIMA
models in practice...
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