POLS571 - Longitudinal Data Analysis
September 13, 2001

1 MA(q) Series

Moving average models are those in which current values of Y; depend on
current and past values of some random (“white noise”) innovation. The key
difference between MA models and those we've talked about so far is that
the influence of a shock has finite persistence; the effect of a given innovation
uy lasts only as many periods as the model has lags, after which it vanishes
entirely.

1.1 The MA(1) Model

The simplest moving average process is the MA(1):

Y, =u +0u_q, t=1,2,..T (1)
where w; is i.i.d. with mean zero and constant variance o2. Its easy to
calculate the properties of this series. The mean is:

o= E(Y)
= E(U,t) + QE(ut_l)
=0 (2)
and the variance is:
ot = Bl(u + Our)(uy + Oup_y)]
= E(ul)+60°E(u;_ )+ 20E(uus_y)
= (1+06%)0, (3)

The one-lag covariance is:



71 = El(u + 0u1)(us—1 + Oug )]

OE (uf—l)

_ pq2
= bo,

and the two- and higher-lag covariances are all zero (why?).

For this series, then:

1. the means, variances and autocovariances are all independent of ¢,

2. the ACF is zero for all lags greater than one,

E(ugus1) + 0E(u? ) + 0B (usus_o) + 0° E(us_1us_s)

3. the ACF at one lag is dependent on the degree of dependence in the
moving average process. In particular, since we earlier defined p; as

%, this suggests that
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0
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(5)

(see the figure). Note that there are two values of  corresponding to every
value of pq; these values are reciprocals of one another (so p; has the same
value at § = 2 and 6 = 1/2 = 0.5). This is because we can write p; =

10 60%2(1/6) @
1+(1/0)2 — 621+(1/6)2] — 62+1°

This means that, e.g.,

Y;«/ = U + 0.5'th,1
and

Y = up + 2upy

will have the same value for p; = ﬁ =0.4.

More generally, for the MA(1) series given here,

(6)



Figure 1: Relationship between 6 and p; for an MA(1) series
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e 0 = 0 corresponds to p; = 0, and is a “white noise” process (i.e., no
temporal dependence in Y;).

e When 6 is positive,

1. p; will be greater than zero,
2. successive values of Y; will be positively related, and

3. the series will be “smoother” than a white noise series.
e In contrast, when 6 is less than zero,

1. p; will be less than zero as well,

2. successive values of Y; will be negatively correlated, and



3. the series will be less “smooth” than a white noise sequence.

We can rewrite (1) by noting that u; = Y;—60u;_1, and repeatedly substituting
lagged values of u; into the equation:

Y, = w+0u
= w+0(Yo1 — Ouy_s)
= wu+0Y,_ — Puyo
= u+0Y, 1 — 0 (Yiea — Ouy_s)
= w4+ 0Y,_ — 0%, o+ Puy_s
= .. (8)
= wu+0Y, 1 — Y, 0+ 0%V, 53— ... — (_6)(T71)Y;€—(T—1) — (=0)"uq

As T — oo, the last term in (16) drops out, and we can write the model as:

[e.e]

Vo= = (-0 + )

j=1
Note the similarity between (9) and the AR(p) model discussed before. In
fact, a famous (and important) theorem in time-series analysis is the Wold
Decomposition Theorem. This theorem states that:

Any weakly stationary, purely nondeterministic stochastic pro-
cess can be written as a linear combination of a sequence of un-

correlated random wvariables.

That is, such a series can be written as:

Yo=Y v (10)
§=0

where the s are parameters. To ensure that the process has finite variance
over time, we typically need to impose the condition

D 4 < o0 (11)
j=0



In the MA(1) example we just discussed, it clear from (9) that the process
meets these guidelines when 6 < 1. The same is true for the AR(1) process
we discussed earlier, provided that ¢ < 1.

1.2 MA(q) Models
A more general MA(q) model is:

Yt = U + Qlut_l + qut_g + ...+ Oqut_q, t= 1, 2, T (12)

A finite moving average process of order ¢ is always stationary, even without
restrictions on the fs, because of the finite persistence of any single shock.
If the model is expressed in AR form (as in (9) above), then the MA pa-
rameters must satisfy the stationarity conditions similar to those required
of AR models. An MA model which satisfies these conditions is said to be
invertible. An MA(1) model with |#] > 1 is thus not invertible, but remains
stationary.

2 A General ARMA Model

We can put together everything we’ve learned so far by considering a model
that has both AR and MA components, called an ARMA(p,q) model:

V=0V + ..+ Yy +ug + 0wy + .+ Opuy (13)

Using the lag operator, we can rewrite this model in the form:

(1—¢L — ¢ol? — ... — ¢, LP)Y; = (1 + 0L + L% + ... + 0,L)u,  (14)

Moreover, if the model requires differencing in order to achieve stationarity,
we call it an ARIMA (p,d,q) model; e.g., the ARIMA(p,1,q) model:

AY;=¢g1Yiq+ o+ 0pYep +up + Orugg + o+ Ogup (15)

The parameters ngﬁ and 0 of an ARIMA model can be estimated using MLE;
more on this in a little bit...



3 What do these series look like?

As an example, I generated some N (0, 1) white noise errors, and then created
four different series, all starting from a value of zero and all from the same
errors. The series follow:

Y, = 09Y, 1+ (16)
Y, = 0.9u_1 +u (17)
Yo = Y+ w (18)
Y, = 09Y, 1 +0.9u_1 +u (19)

I plot these figures below...

Notice several things about the series:

e The AR(1), MA(1) and ARMA(1,1) series are all mean-reverting, while
the I(1) series “drifts” away from the mean (zero).

e The MA(1) series stays the “closest” to the mean — because the “shocks”
don’t persist, the series never strays far from its mean level.

e The ARMA(1,1) series “looks like” the AR(1) series, but has more
variability and is less mean-reverting.

If we look at the values of the means and variances for the first 100 observa-
tions of these series, we see the following:

Variable Obs Mean Std. Dev. Min Max

AR(I) 100 -.8392515 1.235517 -4.154195 1.811882
MA(1) 100 -.175531  1.096084 -2.555826 2.634273
ARMA(1,1) 100 -1.590666 2.176644 -7.756127 2.884106
I(1) 100 -4.071511 2.839775 -10.17822 .1636956

Next, let’s take a look at the ACFs and PACFs of these series...



Figure 2: AR(1), MA(1), ARIMA(1,0,1) and I(1) series, ¢ =6 = 0.9
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3.1 AR(1) identification

For AR(1) series with |¢| < 1, the ACF should be a smoothly declining
function of time; either positive (for ¢ > 0) or alternating between positive
and negative (for ¢ < 0). The extent to which this will be true in practice,
however, depends a lot on the length of the series.

Here’s the ACF for our AR(1) series, for 7' = 50 and T" = 300:



Figure 3: Correlogram, AR(1) series with ¢ = 0.9, T' = 50
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Figure 4: Correlogram, AR(1) series with ¢ = 0.9, T' = 300

Bartlett's formula for MA(e) 95% confidence bands
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Clearly, the more observations we have, the better...

Contrary to the ACFs, the PACFs for an AR(p) series should be zero beyond
p lags. Again, however, this is true only as T" — oo; in practice, the truth
can be harder to find...



Figure 5: PACF, AR(1) series with ¢ = 0.9, T' = 50
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Figure 6: PACF, AR(1) series with ¢ = 0.9, 7" = 300
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It would be easy to identify this as a AR(1) series with 300 observations, less
clear if we only had 50...

3.2 MA(1) identification

We follow a similar process for identifying MA(q) series. For such series,
the ACF plot dies out quickly; beyond ¢ lags, the ACF for an MA(1) series



is zero. Again, however, these statements are true only asymptotically; in
practice, the number of observations we have determine how easy it is for us
to identify the series...

Figure 7: ACF, MA(1) series with § = 0.9, T' = 50
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Figure 8: ACF, MA(1) series with # = 0.9, T" = 300
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In contrast to the AR(p) series, an MA(q) series will show a decaying PACF:

Figure 9: PACF, MA(1) series with 6 = 0.9, T = 50
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Figure 10: PACF, MA(1) series with 6 = 0.9, 7" = 300
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Here, the decay is alternating between positive and negative values. The
PACF is crucial for differentiating between, e.g., an AR(1) model and a
higher-order MA(q) model. For example, the ACF of the two series

Y, = 0.8Y;_1 + u, (20)

and
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Y;g = O.9ut,1 + —|—O.6Ut,2 + O.SUt,3 + O.lut,4 -+ Uy (21)

will be almost identical in practice. The PACFs, however, will be very dif-

ferent, since there is no partial autocorrelation beyond one lag in the AR(1)
model.

3.3 ARMA(p,q) model identification

For an ARMA (p,q) model, we expect to see “decaying” functions in both the
ACF and the PACF. For illustration, here are the ACF and PACF for the
ARMA(1,1) series with ¢ =6 = 0.9 and T = 300:

Figure 11: ACF, ARMA(1,1) series with ¢ =60 = 0.9, T' = 300
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Figure 12: PACF, ARMA(1,1) series with ¢ =6 = 0.9, T' = 300

o Partial aubocorrelations + Btandardised variancer
9595 conf. bands [ = 1fmprb(n)]
1 L 1 L

1.004 I 1.00
28 075 Fo.Ts
28
E_@ 0.50 [ 0.50
kL]
2f  0.36 . Fo.26
&5 T T T T T T
BE g0 11 !J' \\ A Al ST AN oo
BX VoV
F 025 I-0.25
ﬁfrs
E‘g -0.50 F-0.50
LEREGREE F-0.78
100 F-1.00
T T T T T
0 3 10 15 20

. Lag
Partial Correlogram

3.4 Identifying Integrated series

Being variants of AR(1) series, integrated series exhibit many of the same
patterns (that is, decaying ACFs and spiking PACFs). In fact, not surpris-
ingly, its often hard to tell the difference between I(1) series and AR(1) series
with ¢ close to 1.0. Here are the ACF and PACF plots for the I(1) series
above (with 7" = 300).

Figure 13: ACF, I(1) series, T' = 300
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Figure 14: PACF, I(1) series, T' = 300
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Identification of I(1) series can be an especially difficult issue for ARIMA
modelers, since assessing whether or not the series requires differencing is a
key early decision. Getting it wrong can lead to overdifferencing, which leads
to parameter redundancy and general ugliness (see McCleary and Hay for a
good discussion of this).

4 Practical Issues - Identification, Estimation
and Testing

The basic idea behind ARIMA modeling is a series of steps, usually along
the lines of:

Identi fication — Estimation — Diagnostics

ARIMA modeling begins on the premise that you first need to identify what
kind of data generating process is driving the data (e.g., AR, MA, integrated,
etc.). Once that is accomplished, parameters may be estimated, after which
diagnostic checks on the remaining residuals are run to make sure that the
us are white noise. Only then can forecasts be made, etc. (If this seems a
little ad hoc, it is...).
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More formally, we can think of the process as:

6.
7.

. Determine of the series is stationary. If so, proceed to (3).

If not, difference the series until it is.

Examine the ACFs and PACFs of the stationary series, in order to
determine the data generating process (AR, MA, or some combination
thereof).

Fit a model — starting simple — using ARIMA /MLE.

Examine and test the residuals to determine if they are white noise. If
they are, proceed to (7).

, if they are not, go back to (3) and try again.

Proceed with inference, hypothesis testing, forecasting, and the like.

Consider the following example: the proportion of Supreme Court decisions
decided by only one vote, by year, from 1900-1992. The series looks like this:

Figure 15: Proportion of One-Vote Supreme Court Decisions, 1900-1992
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We begin by noting that the series doesn’t really look very stationary, and
its certainly not stationary in the variance; but that it also doesn’t appear
to be “drifting” over time either. For now, we’ll adjust the variance issue
by logging the series; we’ll come back to the idea of modeling time series
variances when we discuss ARCH/GARCH models. An examination of the
ACF and PACF on the logged series reveals the following:

Figure 16: ACF, Supreme Court “One-Vote” series, 1900-1992
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Figure 17: PACF, Supreme Court “One-Vote” series, 1900-1992
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There’s a generally decaying ACF, but its decaying relatively quickly; and
there are big one- and two-lag spikes in the PACF. These things suggest an
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AR(2) model. So, we can estimate such a model, using the -arima- com-
mand in Stata.

arima privote, ar(l 2)

This gives us estimates as follows:

Y, = -286 + 0.400Y;—; + 0409Y;> + w
0.556 0.084 0.108

which look pretty good (significant, etc.). Next, though, we have to deter-
mine if that is all we need to do. We do this by determining if the errors are
white noise or not. The easiest way to do this is to generate and plot the
residuals, and possibly to do some sort of test (e.g. a Q test).

predict ar2res, residuals

gra arlres year, xlab ylab yline(0)

Figure 18: Plot of 4s, AR(2) model
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The residuals look like white noise to me. A more formal test is the Q test:
If the residuals are a white noise process, then:

- Ly 2

Q—N<N+2>;N_SP(J)—>XS (22)
where s is the number of lags specified and p; is the estimated autocorre-
lation at lag s. Under the null hypothesis, the ) statistic converges to a
chi-square distribution with j degrees of freedom. So, Q is a test for the null
hypothesis of no autocorrelation in a series. The Stata command for this test
is -wntestq-; its a good idea to estimate it for many values of s, just to be
sure...

wntestq ar2res, lags(1)

Portmanteau test for white noise

Portmanteau (Q) statistic = 0.0118
Prob > chi2(1) = 0.9135

wntestq ar2res, lags(2)
Portmanteau test for white noise

Portmanteau (Q) statistic = 0.1310
Prob > chi2(2) = 0.9366

wntestq ar2res, lags(3)
Portmanteau test for white noise

Portmanteau (Q) statistic = 0.6555
Prob > chi2(3) = 0.8836

wntestq ar2res, lags(4)
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Portmanteau test for white noise
Portmanteau (Q) statistic = 1.7582
Prob > chi2(4) = 0.7801

etc.
So, this is probably a pretty good model for the series we’ve got here.
Note several things about ARIMA models in general:

e [ts rare, as an empirical matter, to have series that has more than two
or three lagged effects. The exception are seasonal effects, which we
aren’t going to go into (for time reasons). (In practice, seasonal effects
ought to be explained/modeled using covariates anyway...).

e Similarly, its rare to have an integrated series of higher order than I(1).

e In general, more parsimonious models are better. Its easy to “overfit” a
model to the data using an ARIMA approach. The problem with over
fitting is that the out-of-sample predictions are actually worse than
those that would be obtained by a simpler model (since the model is
essentially “fitting noise”).

We’re not going to go into this much more, even though there’s a lot more
we could do (diagnostics, prediction, etc.) We’ll come back to these models
later, however, and we’ll discuss some multivariate Box-Jenkins models as
well.
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