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Error-Correction Models

1 Introduction

So far, we’ve seen a couple different approaches for modeling (lagged) rela-
tionships in nonstationary time-series, both of which have their problems. If
we don’t difference the series,

Yt = α + βXt−1 + ut (1)

we run the risk of autocorrelated errors and spurious regressions. If we do
difference the series, however, we have:

∆Yt = α + β∆Xt−1 + ut (2)

in which case the effects of X on Y are purely of a short-term nature. But,
what if we believe that X and Y are both connected in the short-term, but
also more generally related over the long haul? Neither model fits the bill.

2 ECMs Explained

The idea behind error-correction models is that there is a long-term equilib-
rium relationship between X and Y . Short-term “shocks” disturb this rela-
tionship, after which the two variables return to equilibrium. Durr (1991)
writes a very simple error-correction model as:

∆Yt = β∆Xt−1 + ρ(Yt−1 − α− γXt−1) (3)

In this model there are three important sets of terms:

• β̂ captures the short-term relationship between X and Y .

• α̂ and γ̂ capture the long-term relationship between X and Y (the
“attractor” – the equilibrium distance between X and Y ).
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• ρ̂ gives the rate at which the model “reequilibrates”, that is, the speed
with which it returns to its equilibrium level. Formally, ρ̂ tells us the
proportion of the disequilibrium which is corrected with each passing
period.

Figure 1: Example: X and ∆X

Consider the following example data. Here, X shows a sharp “spike” at t = 4;
then, at t = 10, it increases slowly from 10 to 20, where it stays permanently.
Here are two different ECMs:

∆Yt = 1.0∆Xt−1 + 0.8(Yt−1 − 5.0− 1.0Xt−1) (4)

∆Yt = 0.25∆Xt−1 + 0.2(Yt−1 − 10.0− 2.0Xt−1) (5)

Note a couple things about these models:

• (4) has a larger degree of short-term dependence of X on Y .
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• The “equilibrium distance” in (4) is Yt = 5 + Xt; that in (5) is Yt =
10 + 2Xt.

• Model (4) reequilibrates at a much faster rate than does (5).

From the models here, and the X variable discussed above, I simulated Y
for each of the two series; these are displayed in Figure 2.

Figure 2: Example: Simulated Ys from ECM Models

Note that:

• The larger degree of short-term dependence in (4) can be seen in the
greater extent to which it reacts to immediate changes in X.

• For, e.g., X = 10, the equilibrium levels are Y = 15 and 30, for the
two series, respectively; for X = 20, the equilibria are Y = 25 and 50.

• Series (4) shows the faster return to equilibrium than does (5).

• Series (4) tends to “overreact” a bit; this is due to the relatively large
value of ρ̂.
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3 Estimation and Testing

Last time, we noted that if both Xt and Yt are cointegrated, we can write:

Xt = Wt + uXt

Yt = AWt + uY t,

Wt ∼ I(1),

uXt, uY t ∼ I(0)

In these series, the common variance of X and Y are due to a common I(1)
component Wt. Moreover, we noted that Zt = Xt − AYt was the “attrac-
tor” that summarized this equilibrium relationship. That is, the long-term
dependence of Y on X (due to W ) is captured by the variable Zt. If, in
addition, there is short-term dependence between X and Y , we might write
this as:

∆Yt = β0 + β1∆Xt−1 + β2∆Xt−2 + ... + βk∆Xt−k + ρZt−1 + ut (6)

where the terms for the ∆Xs capture the nature of the short-term dependence
between X and Y . This equation can be rewritten in turn as:

∆Yt = β0 + β1∆Xt−1 + β2∆Xt−2 + ... + βk∆Xt−k + ρ(Xt − αYt) + ut (7)

which is the ECM model we’ve been talking about all day. This formulation
of the model suggests two possible alternatives for estimating ECMS...

3.1 The Engle-Granger Two-step Method

Nor surprisingly, Engle and Granger’s approach is one based in the close
connection they draw between ECMs and cointegration. The basics of the
approach boil down to three steps:

1. Estimate the cointegrating regression Yt = α + γXt + et,

2. From these estimates, generate Ẑt = Yt − α̂− γ̂Xt,

3. Include Ẑt−1 for Zt−1 in model (6), above.
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Example: House and Senate Composition Data

Going back to our Exercise 1 data, we can estimate the ECM of House on
Senate democratic membership, as follows. First, estimate the cointegrating
regression:

. reg dhpct dspct

which yields:

House Pct.t = 16.46 + 0.728(Senate Pct.)t + et

In equilibrium, we estimate that the Senate is more Democratic than the
House. From this equation, we can get the residuals Ẑt, the lagged values of
which we then plug into the ECM along with the lags of ∆X:

. predict Zt, resid

. gen lagZ=Zt[ n-1]

(1 missing value generated)

. dif 1 dhpct

. dif 1 dspct

. lag 1 D dspct

. reg D dhpct LD dspct lagZ

which yields:

∆HousePct.t = 0.12 - 0.02(∆SenatePct.)t−1 - 0.60(Zt−1) + ut

(1.01) (0.12) (0.14)

This means that the relationship between the two returns to its equilibrium
levels at a rate of about 60 percent of the disequilibrium per Congress.
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3.2 One-Step Methods

Note that, with one lag of ∆X, if we substitute Zt = Xt − AYt into (6), we
get:

∆Yt = β0 + β1∆Xt−1 + ρ(Yt−1 − α− γXt−1) + ut

= (β0 − ρα) + β1∆Xt−1 + ρYt−1 − ργXt−1 + ut (8)

This suggests that we can estimate an ECM as a single equation, where
changes in Yt are a function of:

• Lagged changes in X,

• the one-period lagged level of X, and

• the one-period lagged level of Y.

We can do this easily in Stata:

. lag 1 dhpct

. lag 1 dspct

. reg D dhpct LD dspct L dhpct L dspct

which yields:

One-Step ECM Results
Variable Estimate
(Constant) 20.18

(4.56)
∆Xt−1 0.07

(0.12)
Yt−1 -0.62

(0.14)
Xt−1 0.27

(0.12)
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Note a couple things here:

• We find, unsurprisingly, the same results. The coefficient on Yt−1 is
an estimate of ρ; here, it is nearly exactly the same as in the two-step
model.

• The same is true of the predictions for the two models, which are very
close to the same (see Figure 3).

Figure 3: Example: Predicted ∆Y s, One- and Two-Step ECMs

In fact, asymptotically, the two methods are the same, and the same coeffi-
cient vectors can be recovered from each model. E.g., the two-step estimates:

∆Yt = 20.18 + 0.07∆Xt−1 − 0.62Yt−1 + 0.27Xt−1 (9)

are easily computed to yield:

∆Yt = β̂0 + 0.07∆Xt−1 − 0.62(α̂ + Yt−1 − 0.44Xt−1) (10)
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which, not surprisingly, is very close to the estimates from the two-step
model.1

The choice of one- or two-step methods isn’t usually all that important. Beck
(1993) argues in favor of the one-step approach, but largely on grounds of
theory/causality (i.e., that one-step OLS is to be preferred when we have
only one endogenous variable).

Next Time: Vector Autoregressions...

1Note that we can only recover the constant terms up to the linear function β0 +
0.62(α) = 20.18. Alternatively, if we omit the constant term from the cointegrating
regression of Y on X, perhaps by “centering” the variables first, then β̂0 provides a direct
estimate of β0.
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