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Time Series Models for Event Counts

1 Introduction

Modeling time series of event counts is tricky. In the first place, all the
reasons that one can’t use Gaussian errors for event counts in a cross-sectional
context (e.g. negative predicted counts, poor distributional fit, etc.) all apply
to time-series as well. Beyond these problems, however, there are also more
specific issues related to the time-series aspect of the model. Think about it
for a minute...

• Event counts are positive, and discrete; that means that the extent to
which they can be autoregressive is limited.

• First-order dependence (e.g., along the lines of Yt = ρYt−1 + ... imply
that the value of the count will grow without bound, or go to zero, over
time; most of the time, this isn’t realistic.

• Taking first differences also isn’t a very attractive option, primarily for
distributional reasons. While we know the distribution of a variable
that is the difference of (e.g.) two independent Poisson processes, its
much harder to say anything about such a difference when the two
aren’t independent (as is almost always the case with time-series data).

If the counts are large enough (typically, above 25 or so) then treating them
as normally-distributed isn’t such a terrible thing.

2 Three Approaches

2.1 PEWMA

PEWMA stands for “Poisson Exponentially Reweighted Moving Average”.
It is the creation of Pat Brandt and John Williams (AJPS paper). It is basi-
cally a Poisson model that captures temporal dynamics through a state-space
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formulation. Specifically, the model estimates a time-dependent average of
the mean of the event count process, that is discounted exponentially (hence
the name).

The model has two parts. The first is the measurement equation, which is
simply:

Pr(Yt|µt) =
µYt

t exp(−µt)

Yt!
(1)

which is a standard Poisson distribution, with µ the mean arrival rate for
events. This mean is set equal to:

µt = µ∗t−1exp(Xtβ) (2)

That is, the covariates impact the rate as a multiplicative function on µ∗t−1,
where µ∗t−1 is a gamma-distributed conjugate prior, calculated from the pre-
vious t − 1 observations. The transition equation is then defined as:

µt = exp(rt)µt−1ηt (3)

where ηt is beta-distributed with parameter ω and rt describes the growth of
the series (if any).

If all this sounds complicated, it is. But, its also intuitive, as just a Poisson
process in which the mean evolves over time, according to a combination of
an exponential weighting of past values of the mean and the current values
of the covariates. Just remember that:

• β gives the effect(s) of the covariate(s) on the mean level of the count
µt. The effect of those covariates enters exponentially, just as in the
standard Poisson model.

• ω is the weighting parameter, which determines the degree of persis-
tence in the series. Smaller values of ω mean less discounting, and
correspondingly higher persistence/temporal dependence. In the limit,
ω = 1 yields a process with a constant mean.

• The transition equation (3) can be rewritten as:

lnµt − lnµt−1 = rt + lnηt (4)
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which means that the period-to-period change in the (log of the ) mean
rate is a function of the growth term and an “error” (ηt). This in turn
means that:

– rt describes the growth in the series; rt = 0 means that the series
isn’t growing over time.

– is the proportional stochastic shift (“shock”) in µt between t − 1
and t.

2.2 Characteristics

PEWMA:

• Is appropriate for series which are persistent – that is, in which the
event count process changes slowly over time.

• Is a data generating process that yields nonstationary series with medium-
to long-term dependence and persistence, but also differenced series
which are stationary.

• Is estimable in GAUSS using a routine written by Pat & Co.

• Is almost certainly “better” (from both a statistical and a substantive
perspective) than OLS, Poisson with a lagged dependent variable, or
other commonly-used routines.

3 PAR

PAR(p) stands for Poisson Autoregression of order p. It is also due to Brandt
and Williams (Political Analysis 2001). The model is:

E(Yt|Y0, Y1, ...Yt−1, X0, X1, ...Xt−1) =

p∑
i=1

ρiYt−i + λ (5)

which is a general form of a mean-stationary time-series model (i.e., without
any particular distributional assumptions about Y ). To get the PAR model,
we start by assuming that the conditional values of Y are drawn from a
Poisson distribution:
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Pr(Yt|µt) =
µYt

t exp(−µt)

Yt!
(6)

and that µt is the conditional mean of the AR process given above (see
Brandt and Williams for details). This is the measurement equation; the
state equation’s density is a gamma prior (as in the PEWMA model):

Pr(µt|Y0, Y1, ...Yt−1, X0, X1, ...Xt−1) = Γ(σt−1µt−1, σt−1) (7)

where µ is the conditional expectation of Yt (that is, conditional on all past
values of Y and X) and σ is its conditional variance. As with PEWMA, the
model is estimated using a Kalman-style filter. Brandt and Williams (2001)
gives the likelihood for the PAR(p) model.

3.1 Details

The PAR model differs from the PEWMA in a number of significant ways:

• The PAR dgp yields a mean-reverting (stationary) series, rather than
a nonstationary one.

• The instantaneous effect of a one-unit change in X differs from the
Poisson (and PEWMA) models. In the latter, its simply exp(Xtβ).
For PAR, however, the impact also depends on the value of the autore-
gressive parameter: (1 −

∑p
i=1 ρi)exp(Xtβ). The difference is due to

the fact that the PAR model accounts for the dynamic changes in the
influence of the covariates over time, in a way that standard Poisson
models don’t.

• In general, the PAR model has the same stationarity restrictions on
the ρs as does a linear time-series model (e.g., |ρ| < 1, in the AR(1)
case).

• Note that both PAR(p) and PEWMA nest the Poisson model as a
special case (the former when ρ = 0, the latter when ω = 0.

• In general, one would choose the PEWMA model when the ACF shows
a long-range dependence in the counts, and choose PAR(p) when the
ACF tends to “die out” more quickly.
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• GAUSS code for estimating both PEWMA and PAR(p) is available at
Pat’s website: http://www.psci.unt.edu/ brandt/pests/pests.htm

4 Autoregressive Poisson

The autoregressive Poisson model we’re talking about here is one developed
by Schwartz, J., Spix, C., Touloumi, G., et al. (1996). I haven’t been able
to get my hands on these papers yet, but here’s what I know:

• The models allow for autoregression and overdispersion (which is nice
– one thing that happens in time-series models of event counts is that
temporal contagion yields, and looks exactly like, overdispersion).

• It can be estimated in Stata (using the -arpois- command).
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