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ARCH/GARCH Models

1 Introduction

So far, we’ve concentrated on modeling the mean of time series. As with
other models (e.g. heteroskedastic probit, etc.), however, there are times
when the variance is also interesting to us: this is particularly true when we
have some interest in the reasons a series is more or less volatile.

Consider a simple, stationary autoregressive model of the mean of Y :

Yt = ρYt−1 + βXt + ut (1)

We typically treat the variance of ut = σ2 as a constant; this then determines
the variability of Y . Another possibility, however, is to allow the variance to
change over time (that is, to consider σ2

t ). One simple way to do this is to
decompose the u term into a systematic part and a random part:

ut = νt

√
ht (2)

where νt is a mean-zero, variance-one, white-noise process and ht is a scaling
factor. In this setup, how we define h becomes very important, and yields a
number of different possibilities.

2 The Basic ARCH(1) Model

One very simple alternative for h in (2) is:

ht = α0 + α1u
2
t−1 (3)

This is often known as the ARCH(1) model (for “autoregressive conditional
heteroscedasticity”), and is due to Engle (1982). Its the model that started
the ARCH craze in economics. The process for Yt is now:

Yt = ρYt−1 + βXt + νt

√
α0 + α1u2

t−1 (4)
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Its easy to see that the expected value of ut is zero (because E(νt) = 0).
Additionally, the unconditional long-run variance of the error term ut is:

V ar(ut) = E(ν2
t )E(ht) =

α0

1− α1

(5)

In turn, this means that we need to impose the constraints α0 > 0 and
0 < α1 < 1 in order to keep the variance of the us positive and stationary.

2.1 Intuition behind the ARCH(1) model

• The short-run (conditional) variance (“volatility”) of the series is a
function of the immediate past values of the (square of the) error term.

• This means that the effect of each new shock νt depends, in part, on
the size of the shock in the previous period: A large shock in period t
increases the effect (on Y ) of shocks in periods T + 1, t + 2, etc.

• So: Large shocks tend to cluster together – the series goes through
periods of large volatility, and some of less volatility.

2.2 An Example

Consider an ARCH series where we have:

Yt = 0.5Xt + ut

ut = νt

√
1 + α1u2

t−1

Xt ∼ i.i.d.N(0, 1)

νt ∼ i.i.d.N(0, 1)

u0 = Y0 = 0

where we have α1 = 0.2 and 0.9 and the same νs in each. These series are
plotted for T = 300 in Figure 1.
Note that the more volatile parts of the series tend to cluster together, and
that the model with α1 = 0.9 has greater influences of shocks than does the
one with a smaller ARCH parameter.
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Figure 1: ARCH series, α1 = 0.2 and 0.9

2.3 Higher-Order ARCH Models

An easy generalization of the ARCH(1) is to add additional, higher-order
ARCH parameters in the variance of the us:

ht = α0 +

p∑
j=1

αju
2
t−j (6)

Higher-order ARCH models are useful when the variability of the series is
expected to change more slowly than in the ARCH(1) model (which is often
the case). As with the ARCH(1) model, we need to impose some constraints
on the αs to ensure that the series is variance stationary.

ARCH(p) models are often difficult to estimate, since high-order models
of this sort (i.e., large p) often yield negative estimates of the αs. To address
this issue, some smart people (notably Bollerslev 1986) came up with...
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2.4 GARCH Models

The general GARCH (“generalized autoregressive conditional heteroscedas-
ticity”) model has:

ht = α0 +

p∑
j=1

αju
2
t−j +

q∑
k=1

γkht−k (7)

that is, the value of the variance scaling parameter ht now depends both on
past values of the shocks, and on past values of itself. The simplest of such
models is the GARCH(1,1) model:

ht = α0 + α1u
2
t−1 + γ1ht−1 (8)

Successive substitution into the right-hand side of (8) gives:

ht = α0 + α1u
2
t−1 + γ1ht−1

= α0 + α1u
2
t−1 + γ1(α0 + α1u

2
t−2 + γ1ht−2)

= α0 + α1u
2
t−1 + γ1α0 + γ1α1u

2
t−2 + γ2

1ht−2

= ...

=
α0

1− γ1

+ α1(u
2
t−1 + γ1u

2
t−2 + γ2

1u
2
t−3 + ...) (9)

The current variance thus can be seen to depend on all previous squared
disturbances u; but the effect of those disturbances declines exponentially
over time.

As in the ARCH case, we need to impose some parameter restrictions on this
model to insure that the series is variance-stationary: in the GARCH(1,1)
case, we require that α0 > 0, α1, γ1 ≥ 0 and α1 + γ1 < 1.

2.5 Other ARCH variants

There have been a bunch of variations on ARCH/GARCH models introduced
in the last 20 years. Most are esoteric; some are useful, others less so. Among
the more prominent ones are:

• ARCH-in-mean (ARCH-M)
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– Model is of the form Yt = βXt + δσt + ut.

– ARCH effects appear in the mean of Y as well as its variance.

– May be appropriate where, e.g., returns to investment depend on
risk (as reflected in volatility).

• Exponential ARCH/GARCH (E-(G)ARCH)

– The E-ARCH(1) model is ln(ht) = α0+α1[θ
ut−1

ht−1
+(|ut−1

ht−1
|−

√
2/π)]

– Here, ht is an asymmetric function of past values of ut.

– Important in e.g. models of stock price volatility, which respond
differently depending on whether shocks are positive or negative.

• Many others: Threshold ARCH (TARCH), simple asymmetric ARCH
(SAARCH), power ARCH (PARCH), etc. etc.

3 Practical ARCH Modeling

3.1 Detection

there’s a relatively straightforward way to assess whether ARCH is a problem
in a particular dataset (the approach is due to Engle 1982):

1. Regress Y on X and obtain some residuals ût.

2. Regress û2
t on p lags of û2

t ; that is, û2
t = α0 + α1û

2
t−1 + α2û

2
t−2 + ... +

αpû
2
t−p

3. Assess the joint significance of α1 - αp. If the coefficients are other than
zero, the null of conditional homoscedasticity can be rejected.

Of course, as always, choosing the correct value of p is the tricky part...

3.2 ARCH Model Estimation

Thankfully, our old friend StataTM will estimate more ARCH and GARCH
models than you can shake a stick at. The commands are, generally:
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. arch depvar indvar ... , arch(#)

and

. garch depvar indvar ... , garch(#, #)

Maximization is almost always done via MLE; one could adopt a feasible GLS
approach, using the estimated errors ût as weights, but MLE is better. Stata
defaults to the BHHH algorithm, which seems to work pretty well. There’s
also a good discussion of ARCH/GARCH models in the Stata manuals.

ARCH and GARCH models are notorious for being finicky – they often don’t
converge, or converge to local mimina, or give “wrong” parameter values (e.g.
negative values on the variance terms), etc. Stata’s procedures seem to have
helped this quite a bit – they’re fairly reliable.

I was going to do an example, but I couldn’t come up with one...

Tuesday: Panel Data Models!
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